POTD: Pulmonary Embolism Decision Rules - Beyond the Basics

Screen Shot 2019-04-26 at 6.26.05 PM.png

Special thanks to Dr. Errel Khordipour for giving this amazing review and Dr. Anna Bona for taking meticulous notes during this talk!

TL;DR

  • PE carries an 8% 30-day mortality after diagnosis (some studies higher)

  • CTA has a very high false positive rate

  • Step 1: based on the patient's history and presentation, do you think the patient has a PE? If yes, proceed. If no, STOP

    • Read more below for nuances re: features that makes a patient risky for PE

  • Step 2: Using your clinical decision rules (Well's, Geneva, or clinical gestalt), is the patient low, medium, or high risk?

    • Low risk: PERC

    • Medium: D-dimer --> then CTA if positive

      • Age adjust your d-dimer if possible

    • High Risk: CTA

  • Step 3: Treat! (or don't treat!)

    • Unstable --> tPA and MICU

    • Stable --> get labs, echo

      • Labs abnormal or echo w/ RV strain --> heparin +/- half-tPA

      • Labs/echo normal --> determine the pt's PESI score

        • High --> heparin

        • Low --> lovenox and discharge

  • Subsegmental PEs in patients < 50 with stable vitals have a very low risk of adverse outcome

    • May consider discharging without anticoagulation if no DVT is present and there are no risk factors for recurrence

  • If the study is inadequate, refer to the d-dimer

    • If d-dimer positive, get bilateral lower extremity dopplers

      • Discharge if negative

      • If positive, consider anticoagulation based on risk factors and labs and f/u with PMD for repeat doppler in 3-7 days. 

Interested? Let's get more specific!

Let’s consider a patient that rolls into your emergency department. They’re complaining of chest pain and shortness of breath. You’re working with a medical student and they list pulmonary embolism as a differential diagnosis. How do we risk stratify our patients using our decision making tools.

Background
First off, why do we care? First off, PE is a very much-feared missed diagnosis, which carries an 8% 30-day mortality** after diagnosis (this was much lower than I expected, to put this into context, hemorrhagic strokes carry a 25-40% mortality depending on your source and hip fractures carry a 4-10% mortality rate depending on your source).

**some studies show a 30% mortality, however those were autopsy studies, so it is unknown whether the patients died with a PE or as a result of a PE.

That being said, our testing methods are very much imperfect! The false positive rate on CTA for segmental PE is 25% and even scarier, the false positive rate for subsegmental PEs is 60%!! Not a great test! Plus, a CTA is not a benign test. Contrast can cause anaphylactoid reactions and lifetime risk of malignancy increases with each CT. Plus, once a patient is labeled as having a PE (even subsegmental), they’re much more likely to get scanned in the future.

So let’s talk about how we can determine who is high risk and who is low risk.

Screen Shot 2019-04-26 at 6.47.06 PM.png

Step 1: Consider the patient’s presentation and history

Vital signs:

Screen Shot 2019-04-27 at 6.00.56 PM.png

Risk Factors

Prior VTE (PE/DVT): Was the last PE/DVT unprovoked or provoked? More concerning if the last PE/DVT was unprovoked (e.g. the patient was not immobilized for a long period of time). This does not change if testing for hypercoagulability was negative. If provoked, this is less concerning.

Malignancy History: Higher risk with active cancer. This either means active treatment within the last 6 months or metastatic disease. Chemotherapy patients are also more at risk. Not all malignancies are created equal, though! Your risk is even higher with pancreatic cancer, multiple myeloma, colon cancer, glioblastoma, and melanoma.

Immobility: certain types of immobility are higher risk than others! Examples: patients in casts, hospitalized trauma patients (others not at higher risk). Surgical patients are higher risk if they were intubated, received general anesthesia, or received an epidural (e.g. knee surgery, abdominal surgery, neurological surgery). Being in a continuous seated position for > 6 hours might be a risk factor.

OCPs: estrogen of any form increases risk (e.g. OCPs, estrogen replacement, intra-vaginal estrogen). For transgendered patients, more study is needed to determine increased risk.

Pregnancy: Highest risk 2 weeks postpartum. If a patient is pregnant and symptomatic, they have a 70% risk of PE.

Increased risk at age 50: Risk of PE perpetually increases with age. 

Symptoms:

Chest painpleuritic chest pain suggest peripheral PE (65%)

Hemoptysis: more indicative of pulmonary hemorrhage, not infarct

Exertional Dyspnea: concerning! You do not need to have chest pain to have a PE!! There is a syndrome that consists of subacute dyspnea that gets worse over days that is predictive of central PE.

Calf pain/Calf swelling: unilateral calf pain (the symptom) and calf swelling (the physical exam finding) are both concerning.

Syncope: corresponds to a large clot burden, but syncope  (likely does not confer an increased likelihood of PE)

Anticoagulation: if they are compliant with anticoagulation, they are less likely to have PE. While this is definitely true with NOACs, with Coumadin, it’s less certain because levels will vary regardless of compliance with medication. Symptoms that are not significant: orthopnea, palpitations, anxiety, dizziness 

Physical Exam Findings:

Abnormal pulmonary exam - decreases likelihood of PE

Clinical signs of DVT - such as calf swelling, redness, etc. increases likelihood 

STEP 1 (cont): Do you, based on the information above, feel that a PE is possible? Meaning, it is ABOVE the 2% threshold for PE. 

Professional recommendation: if the patient has risk factors in 2 or more of the above categories (e.g. vital sign and risk factors, or risk factors and exam findings), and there is no alternative explanation for the patient's presentation, you can say adequately that you have suspicion for PE. 

If you have less than a 2% clinical suspicion for PE, STOP. You do NOT think there is a PE and you do not evaluate further. I repeat - STOP! Evaluate for other suspected pathologies). ACEP Guidelines: 2% is an acceptable cutoff recognizing limitations of testing and risk of false positives (in latest NSTEMI guidelines) Now that you truly think your differential should include PE...  


STEP 2: RISK STRATIFY

It doesn't matter if you use Well's Score vs. Geneva vs. Gestalt; all have been shown to be equal. Keep in mind these decision tools SHOULD NOT used to rule out. They are only to RISK STRATIFY. Meaning that you clinically have a suspicion of said disease before you use them. This means you should NEVER document "Well's score low, not likely PE". 

 High risk: get a CTA! May consider empiric heparin before or after CTA.  

Moderate: D-dimer. 

  • In general, you should use age adjusted cutoffs for patients > 50. The conversion depends on which unit you use. 

    • FEU (fibrinogen unit, cutoff usually ~ 500): add the age x 10

    • DDU (d-dimer unit, cutoff usually ~ 250): add the age x 5

Low: PERC


STEP 3: Further Management

Ever get a reading that said "evaluation for sub-segmental suboptimal due to motion artifact? What do you do? (Only if vital signs are stable)

  • Get a d-dimer (if not already obtained)

  • Positive --> LE dopplers

    • Yes DVT: anticoagulate!

    • No DVT: discharge with or without anticoagulation based on risk factors and lab values; follow-up with PMD for repeat surveillance ultrasound in 3-7 days. 

  • Negative -->  Discharge 

Now let's go over what you do if a PE is found...

bottom.png

Disposition: depends on if the patient is stable or unstable

Unstable: hypotensive, signs of shock, etc

  • Give tPa and admit to MICU

Stable: labs (BNP, troponin), echo

  • If the patient as abnormal labs or right heart strain, give heparin +/- half-dose tPA and admit to ICU/tele

  • If normal, determine the patient's PESI Score

    • High PESI score --> give heparin and admit to floor

    • Low PESI score --> give lovenox** and discharge

** There inadequate evidence and no FDA approval for NOACs at this time
  Subsegmental PEs in patients < 50 with stable vitals have a very low risk of adverse outcome, so you may consider discharging without anticoagulation if no DVT is present and there are no risk factors for recurrence and have the patient f/u with PMD for surveillance of PE symptoms

 · 

POTD: AFib in Wolff-Parkinson-White Syndrome

Atrial fibrillation can occur in up to 20% of patients with Wolff-Parkinson-White Syndrome (WPW). The accessory pathway allows for rapid conduction directly to the ventricles bypassing the AV node. Rapid ventricular rates may result in degeneration to VT or VF.

ECG features of Atrial Fibrillation in WPW are:

  • Rate > 200 bpm, can be closer to nearly 300bpm!

  • Irregular rhythm

  • Wide QRS complexes due to abnormal ventricular depolarization via accessory pathway

  • QRS Complexes change in shape and morphology

  • Axis remains stable unlike Polymorphic VT

Treatment

Treatment with AV nodal blocking drugs e.g. adenosine, calcium-channel blockers, beta-blockers may increase conduction via the accessory pathway with a resultant increase in ventricular rate and possible degeneration into VT or VF

  • In a hemodynamically unstable patient urgent synchronized DC cardioversion is required.

  • Medical treatment options in a stable patient include procainamide, although DC cardioversion may be preferred.

Example of EKG of WPW with afib

Example of EKG of WPW with afib

Vtach vs Afib in WPW

Vtach vs Afib in WPW

 · 

Targeted Temperature Management

Targeted Temperature Management

What is it: the purposeful cooling of a patient post-cardiac arrest. Target of 32°C to 34°C (Some studies say 36, but debatable and prevent any hyperthermia) for at least 24 hours. 

Why: To improve the chance of survival and neurologic recovery, international guidelines recommend use of targeted temperature management (TTM), together with urgent coronary angiography and percutaneous coronary intervention when appropriate

Who: 

  • Post cardiac arrest (any cause but most evidence supports from VF/VT shockable causes of cardiac arrest)

  • ROSC < 30 mins from team arrival

  • Time < 6 hours from ROSC

  • Patient is comatose, GCS <8 (this is try and improve neurological outcome, so someone who is neurologically intact does NOT need TTM)

  • MAP >= 65mmHg

  • depends on your hospital protocol

When: Initiate within 6 hours of ROSC and maintain for 24 hours

How: 

  • cold IVF at 2-3 mL/kg stat

  • cooling vest and cooling machine

  • sedation and paralysis

Thumbnail_TemperatureManagement_AC.jpg

Complications:

Shivering, electrolyte abnormalities, cold diuresis, infection. 

IJCCM_2015_19_9_537_164806_t1.jpg

So, for post cardiac arrest patients with depressed neurological function - Keep this in mind, but consult your ICUs and plan this patient's care together for best management. TTM needs an ICU level care admission. 

Happy Learning!

References:

https://jamanetwork.com/journals/jama/fullarticle/2645105

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578199/
https://lifeinthefastlane.com/ccc/therapeutic-hypothermia-after-cardiac-arrest/

http://www.ijccm.org/article.asp?issn=0972-5229;year=2015;volume=19;issue=9;spage=537;epage=546;aulast=Saigal

 ·